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An approximate solution is found for a model kinetic equation for gas flow in a 
cylindrical capillary at whose flat bottom evaporation occurs. 

A description of transport processes in capillary-porous media incorporating phase trans- 
itions requires a study of the vapor-transport kinetics in a cylindrical capillary of finite 
length in which evaporation occurs. Levdanskii et al. [i] have solved this problem for the 
case of free-molecular flow. 

Much work has been done on gas flow in infinitely long capillaries; e.g., Cercignani and 
Sernagiotto [2] found a numerical solution for this problem over a broad range of Knudsen 
numbers Kn. Sone and Yamamoto [3] analyzed the asymptotic solution for small Kn, and Ferzi- 
ger [4] carried out analogous calculations for large Kn (finding a series solution). 

In the present paper we analyze the slow flow of a single-component gas in a cylindrical 
capillary of radius ro bounded on one side (the bottom; Z = O) by a flat surface at which 
evaporation occurs. The inner surface of the capillary is assumed at a constant temperature. 
We assume that the gas molecules are reflected diffusely from the walls and that the evapora- 
tion (or condensation) coefficient at the bottom equals one. 

We begin this analysis of the gas flow with the Bhatnagar--Gross--Krook (BGK) kinetic 

equation: 

af af g - - f  (1) 
~ a~ + ~ a - z =  " �9 ' 

where R : (X, Y ) ,  ~R = (~X, ~Y),  and the Z ax i s  i s  the ax i s  of the c y l i n d e r .  
§ ~ /  § + 

Introducing the dimensionless coordinates and velocities z = Z/ro, r = ro, u = ~ x 
x hl/2(h = m/2kT), we transform Eq. (i) to 

a af ' f + ~ z -  = ~ ( f o - / ) ,  Ur 
Or a z  

(2) 

where 
ck - -  r~ �9 ' 1 

2Kn 

The boundary conditions are as follows: At the lateral surface (r = i), we have the 

condition 

F (3) 
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for reflected molecules; at the bottom (Z = 0), we have 

[ (u s > 0) = nsex p {--u S} . (4) 

whgre n s i s  t he  s a t u r a t i o n  vapor  d e n s i t y  a t  the  g iven  p r e s s u r e .  We a l s o  s p e c i f y  the  d e n s i t y  
n l a t  z = t .  

By analogy with the problems involving slow gas flow in an infinitely long capillary un- 
der the influence of a small pressure gradient [5], we seek a solution of Eq. (2) in the form 

[ = [, [1 + K (z--  t) + us, (r~ u~)], (5) 
where 

ft  = n~ exp {--u~}, 

and the quantity K is to be determined, in contrast with the situation in the earlier work, 
where it was specified. 

According to Eq. (5), the particle density n is constant over a cross section and is a 
function of z alone. 

Substituting (5) into (2) and linearizing, we find 

, +  g O, =2G(~--K, (6) 

= 07 = 

where c z is the dimensionless macroscopic velocity; by virtue of the axial symmetry we have 
e z = c z ( r ) .  

From Eqs. (3) and (5) we f i n d  t h a t  a t  r = 1 we have 

, ( 5 .  ~ > 0 )  = O. (7) 

We write Eq. (6) in integral form (the integration is carried out along the character- 
istics), using boundary condition (7) (Fig. i): 

where 

From �9 (5) we find 

b 

0 

( 8 )  

s = V" (x--x')2 + (Y - -gSL b =-- rcosO + ~" 1 --r'sin~O. 

1 S exp {--u~}u~,d~ Cz = ~ 3 / 2  

->. + 
Now m u l t i p l y i n g  (8) by (u~/lr s / a )  exp {--u 2} and i n t e g r a t i n g  over  u (du  = UrdUzdUrd%), we f i n d  

2 g  b 

c~ = - -  ~ ( r ' ) - -  4 (as) a g o ,  ( 9 )  
2n 

fl 0 

where 

To determine K we write another equation, which is found by equating the flux across an 
arbitrary cross section of the capillary to the flux at the bottom, obtained with the help 
of (4) : 
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I ns 1 + Kl 

f rczdr - -  nt 
�9 2~ 1/2 
0 

(lO) 

In Eq. (5) and the derivation of Eq. (IO) we assumed the distribution function of the 
incident molecules to retain its z dependence all the way to the bottom. Consequently, 
the equations derived here are valid for z > zo, where Zo ~ I/2e is the thickness of the 
Knudsen layer. 

We rewrite Eq. (9), introducing v = v z =--2cz/K 

2~ b 

V = - -  V (r') + Jo (~xS) dsdO. 

0 0 

(11) 

The problem has thus been reduced to one of solving integral equation (ii) and then 
determining K from Eq. (I0). In the limit e § = we expand v in a Taylor series in (ii) and 
replace the integration over the cross-sectional area of the capillary by an integration over 
the area of a circle of radius A/~, where Jn(A) = 0; as a result we find a Poiseuille profile: 

v = --(l--r ~) + vo (12) 
2 

where vm is the slip velocity�9 

Let us examine Solution (ii) for the case of small values of ~. 

Since sdsd0 = dx'dy', we can write Jo(~s)dsd0 as [Jo(~s)/s]dx'dy'. In the limit 5' + r, 
s tends toward zero, while Jo(~S)/S tends toward infinity for small values of ~. For these 
small values of ~ we can thus approximate v(r') on the right side of (Ii) by v(r). An analo- 
gous procedure was used by Kogan [5] for the flow between infinite parallel plates in the 
case in which the kernel of the integral equation has a logarithmic singularity. As a result 
of this substitution we find 

1 
v o (r) = , (13) 

a (r) 

where 

2~ b 

~ T -  A ( ~ b )  dO . 

0 0 0 

For larger values of ~, an approximate analytic solution v (r) can be found by expand- 
ing the function v(r') in a Taylor series in x' and y', retaining the second derivatives, 
and setting x = 4, y = 0: 

Ov .dr O--v_v I 
Ox' ~'=x,v'=v= / = 0 ,  d r '  Oy' ,,=~,y,=~ 

02v ~,=x, --  d 2 v  , 02v ~'==. _ 1 dv 

Ox'~ u'r~v dr2 OY '~ v'=v r dr 

020 x'=x, : O, 
Oxt Oy' y'=y 

x ' - - x  = scosO, y ' - - y  ---- ssinO 

and 

__~_( 1 s~sin20)._}_ 1 02v s~cos20. (14) 
v ( r ' ) = v ( r ) +  SCOS O+ 2r 2 -  Or ~ 
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find 

where 

Substituting (14) into (ii) and replacing dr/dr, d2v/dr 2 by their values from (12), we 

v 1 (r) = v o (r) -- ~ tax (r) q- 0.5a 2 (r) (15)  
- ~ a  (r)  ' 

2~r b 

al (f) -- i f s c~ OJ~ (~s) dsdO -a2 j" c~ O [ bJl (ab) - l-~z J~ (~b)] dO, 
0 0 0 

2~ b 

a 2 (r) = S2Jo o~s sdO = 

0 0 

. - -  ~ w J2 (so) a 4 (sO) + - j  dO. 

0 

The d i m e n s i o n l e s s  v o l u m e  f l o w  r a t e  p e r  u n i t  a r e a ,  d i v i d e d  b y  - - K / 2 ,  i s  

I 

N* = _ _ _ _ 2  N = 2 ~ rv ~) dr. (16)  
K 2 O 

We are dividing the flow rate by-K/2 for convenience below in comparing the values found 
for N with the results of previous papers on capillary flow in which dimensionless mmss 
fluxes divided by--K were calculated; they are equal to the volume flow rates divided by--K/2. 

The integrals in the functions a(r), a~(r), and a2(r), and thus the flux N have been 
found numerically. The values of Jn(t) for t N 1 were approximated by series [6], while those 
for t > 1 were approximated by the sum of two exponential functions (the interval t = i-i0 
was split into two parts). 

The calculations show that up to ~ values on the order of one, the values of vo(r) and 
v~(r) (and thus N*) are essentially the same. With a further increase in a, the difference 
between vo(r) and v1(r) increases. 

In Table 1 we compare the values of N* calculated from Eqso (13) and (15) with the re- 
sults of the numerical solution of [2]. For ~ ~ 1 the values of N* found from vo (or vl) 
agree well with the corresponding values from [2]; in the limit a § 0 we find a value of N* 
which is approximately the free-molecular value, 8/3 ~/~. At larger values of ~, the values 
of N* determined from v1(r) also agree with the results of [2]; in addition, the v1(r) pro- 
file for e = 5 agrees well with the velocity profile given in [3]. On the basis of all this 
agreement, we conclude that Eq. (15) is valid for calculating both the velocity profile and 
the flow rate up to ~ = 5. 

In the limit ~ § ~ we find from (12) 

N* = -- ~ v~. (17) 
4 

This equation is the same as that given in [3], with 

0.548 
v~ = 1.016 + 

From (i0) and (16) we find 

I as  ns  1 

K = nl N = n~ 
nli2 N * ' 2l -'f- zd l2  (18)  l + - -  

2 N *  

For large values of ~ we find from (17) and (18) 

ns I 

N ~- tzz 
81 

- - I -  z d / 2  
a + 4 v o  
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TABLE i. Volume Flow Rate N* as a Function of 

�9 I 1 0,1 0,2 0,3 0,4 1 2 3 4 5 

N* from (15) 
N* from [2] 
N* from (13) 

,404 
,404 

1,404 

1,383 
1,382 
1,383 

,379 
,377 

1,379 

1,383 
1,380 
1,385 

,482 
,459 

1,501 

1,726 [1,99712,274 
1,661 [ 1,88512,119 
1,865 !I!2,42413,240 

2,554 
2,358 
4,41 ! 

TABLE 2.. 
for I = 20 

' 7.,:- - 

N 
( n s / n l - -  I) 

No 
( n J n l  - -  1) 

N/(ns/n / -- i) 

0,I  I 0,4 

and No/(ns/n I -- i)a s Functions of 

1 3  5 10 

0,0574 0,0766 

0,0638 0,0893 

50 100 

0,211 0,302 

0,338 0,650 

0,0330 0,0326 

0,0351 0,0346 

500 

0,479 

3,15 

0,0348 0,0459 

0,0370 0,0499 

0,564 

O~ 

// 

Fig. i. Geometry of 
the problem. 

n8 1 

N =  /ll  
81 + :~1/2 (19) 

a + 4v,~ 

We thus see from (19) that in the case 1 << ~t/2=/8 we can use 
the Hertz--Knudsen equation for evaporation from a free surface, with 
the mass velocity v z taken into account in the distribution function 
of molecules incident on the bottom [7]; i.e., in the limit a § = (1 
<< ~t/=~/8), the flux N tends toward a constant value in contrast 
with the case of an infinite capillary [2]. 

Table 2 shows N/(ns/n I -- i) for various values of a (l = 20); 
shown for comparison here are the values of this quantity in the case 

Ko = (i -- nJnl)/1. It should be noted that the parameters nl, l, and a cannot be chosen 
independently: When a is changed, n I or ro must also be changed. If we wish to change a, 
while holding ro and ns/n / constant, we must allow the appropriate change in ns, i.e., the 
temperature of the system (n s and T are related by the equation for the saturation vapor dens- 
ity~. Accordingly, in order to transform to dimensional velocities and flow rates we must 
multiply the corresponding dimensionless quantities by different factors, which are dependent 
on the temperature, i.e., on a. Since there is an exponential dependence on T in the equa- 
tion for the saturation vapor density, however~ the difference is only slight: for ice, e.g., 
as a is varied from0.1 to 5 the temperature increases by a factor of only 1.17. 

NOTATION 

f, distribution function; ~, molecular velocity; n, unit vector along the normal to the 
lateral surface; T, scale time between molecular collisions; L, length of capillary; 1 = L/ro, 
No = --Ko/2 N*; Indices: "~" corresponds to the lateral surface of the capillary. 
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